109

Kinetics of Nucleophilic Attack upon Coordinated Organic Moieties. Part 22^{ \neq **}. Reaction of [Fe(CO)₃(1-5-** η **-dienyl]⁺ Cations with Imidazole**

DAVID J. EVANS and LEON A. P. KANE-MAGUIRE*

Chemistry Department, University College Cardiff, P.O. Box 78, Cardiff CF1 1XL, U.K. Received February 23,1982

Synthetic and kinetic studies are reported for the reactions of the cations $[Fe(CO)_3(1-5\n-rdienyl)]$ *⁺ (dienyl =* C_6H_7 *or 2-MeOC₆H₆) with imidazole. The results (e.g. Rate = k[complex](imidazole/) support direct addition of imidazole to the dienyl rings. For* attack on the C_6H_7 cation, imidazole is about twice *as reactive as pyridine, as expected from its greater basicity. However, this nucleophilic order is strongly reversed (i.e. pyridine > imidazole) for analogous* attack on $[Fe(CO)_3(1-5-n-2-MeOC₆H₆)]^+$. This sur*prising observation suggests some specific rate-retarding interaction between the latter cation and imidazole, such as H-bonding between the imidazole-NH and the oxygen of the 2-Me0 substituent.*

Introduction

The importance of steric and electronic factors in the addition of amines to $[Fe(CO)₃(1-5- η -C₆H₂)]⁺$ (Ia) and related cations was recently delineated using substituted anilines and pyridines as nucleophiles $[1, 2]$. As an extension of these studies and as part of a programme investigating the interaction of organometallic cations with biologically significant molecules, we now wish to report related studies of the reactions of (Ia) and $[Fe(CO)₃(1-5-\eta-2-MeOC₆ H_6$]⁺ (Ib) with imidazole.

Experimental

Materials

The cations (Ia) and (Ib) were isolated as their $\text{B}F = \text{sd}t_0$ and purified using published procedures [3]. Imidazole was purchased in pure form from [3]. Imidazole was purchased in pure form from
BDH, and used without further purification. Acetonitrile (BDH) solvent was distilled in bulk and stored over molecular sieves (grade 3A) under a dinitrogen atmosphere.

Tricarbonyl (l-4-?)-5-imidazoliocyclohexa-1,3-diene) Iron Tetrafluoroborate, (Ha)

 $[Fe(CO)₃(1-5- η -C₆H₂)] [BF₄] (0.10 g, 0.327]$ mmol) and imidazole (0.022 g, 0.323 mmol) were shaken together in acetone (10 cm^3) for 5 min. under a dinitrogen atmosphere. Rotary evaporation of the resultant solution to dryness yielded a yelloworange oil. Dissolution in acetone (0.5 cm³) followed by addition of diethyl ether (40 cm^3) gave the product (IIa) as a pale yellow precipitate (0.050 g, 45% yield). (Found: C, 37.1; H, 3.2; N, 8.6. Calc. for $C_{12}H_{11}BF_4FeN_2O_3$: C, 38.5; H, 3.0; N, 7.5%). An acetone solution exhibited two intense IR carbonyl bands at 2060 and 1991 cm^{-1} . The presence of a band at ca. 1060 cm^{-1} (Nujol mull) confirmed the presence of the BF \pm anion. ¹H NMB (CD3COCD3)r 0.90% (s, 1H, Ha of imidazole), 2.30 (overlapping doublets, $2H$, H^b and H^c of imidazole), 4.10 (overlapping multiplets, 2H, H^2 and H^3), 4.80 (m, 1H, H^{5} ⁶, 6.75 (overlapping multiplets, 2H, H¹ and H⁴), 7.30 (m, 1H, H^6 [']), 8.20 (m, 1H, H^6). For the proton assignments see the numbering scheme in Fig. 1.

A sample of the PF_6^- salt, $[Fe(CO)_3(1-4-\eta-C_6 H_7$ ⁺ $C_3H_4H_2$] [PF₆], was isolated by a modified procedure. $[Fe(CO)₃(1.5- η -C₆H₂)] [BF₄] (0.20 g,$ 0.654 mmol) and excess imidazole (0.088 g, 1.30 mmol) were shaken in acetone (25 cm^3) under dinitrogen for 2 hr. Addition of diethyl ether (40 cm^3) gave no precipitate. Rotary evaporation to dryness, followed by dissolution in water (10 cm^3) and addition of solid $[NH_4] [PF_6]$ gave a waxy solid. Recrystallization from acetone/diethyl ether yielded the product as an off-white solid (Found: C, 34.5; H, 2.4; N, 4.6. Calc. for $C_{12}H_{11}PF_6FeN_2O_3$: C, 33.3; H, 2.6; N, 6.5%).

Tricarbonyl (1-4-n-2-methoxy-5-imidazoliocyclohexa-*1,Idiene) Iron Tetrafluoroborate, (Hb)*

This salt was quantitatively prepared *in situ* by mixing equimolar amounts of $[Fe(CO)₃(1-5-n-2-Me-1)]$ OC_6H_4) [BF₄] (Ib) and imidazole in d⁶-acetone solvent to give $[Fe] =$ [imidazole] = 0.18 mol dm⁻³. ¹H NMR (CD₃COCD₃) τ 1.00 (s, 1H, H^a of imidazole), 2.30 (overlapping doublets, $2H$, H^b and H^c of

0 Elsevier Sequoia/Printed in Switzerland

[#]Part 21. J. G. Atton and L. A. P. Kane-Maguire, J. *Chem. Solt.* Part 21. J. G. Atton and J. Soc., *Dalton Trans.*, in press.
*Author to whom all correspondence should be addressed.

imidazole), 4.30 (m, 1H, H^3), 4.95 (m, 1H, $H^{5'}$), 6.21 (s, 3H, MeO), 6.60 (m, 1H, H^1 or H^4), 7.10 (m, 1H, H^1 or H^4), 7.35 (m, 1H, $H^{6'}$), 8.25 (m, 1H, H^{6}).

This acetone solution upon dilution exhibited two intense $v(CO)$ bands at 2060 and 1989 cm⁻¹. No other carbonyl peaks were noted, confirming quantitative adduct formation at low concentrations ($[Fe] =$ [imidazole] = 5×10^{-3} mol dm⁻³) also.

Tricarbonyl (I-4-q-5-imidazoliocyclohexa-1,3-diene) Iron, (IIIa)

This neutral derivative was prepared by treating salt (I, 0.10 g, 0.327 mmol) with a large excess of imidazole $(0.2 \text{ g}, 2.94 \text{ mmol})$ in acetone (20 cm^3) under dinitrogen. Rotary evaporation yielded a yellow solid which was difficult to separate from excess imidazole. However, the presence of neutral (IIIa) was confirmed by the presence of two strong $v(CO)$ bands at 2055 and 1979 cm^{-1} in acetone, and from the ¹H NMR spectrum (CD₃COCD₃): τ 1.8-2.9 $midazole$), 4.22 (overlapping multiplets, $2H$, H^2) $ad H³$), 5.17 (m, 1H, $H⁵$), 6.88 (overlapping multiplets, 2H, H¹ and H⁴), 7.50 (m, 1H, H^{6'}), 8.40 (m, $1H, H^6$).

Fig. 1. Structure of adduct (IIa).

Spectroscopic Studies

Infrared spectra were recorded on a Pye Unicam SP3 200 spectrophotometer using matched 0.5 mm $CaF₂$ cells. ¹H NMR spectra (90 MHz) were measured on a Perkin Elmer R32 spectrophotometer.

Kinetic Studies

The reactions of (Ia) and (Ib) with imidazole in $CH₃CN$ were generally studied under pseudo-firstorder conditions using a large excess of nucleophile $([Fe] = 1.2 - 1.5 \times 10^{-3}$ mol dm⁻³, [imidazole] = $0.5-8.0 \times 10^{-2}$ mol dm⁻³). All of the reactions were rapid and proceeded to completion under the kinetic conditions employed. They were conveniently monitored by following the decrease in absorbance at 390 nm using a thermostatted $(\pm 0.1 \degree C)$ stopped-flow spectrophotometer. Reaction traces were stored on a Tektronic 564B storage oscilloscope fitted with a log converter, thus giving a direct record of absorbance changes.

Pseudo-first-order rate constants, k_{obs} , were calculated from the slopes of plots of log $(A_t - A_\infty)$ vs.

time. Such plots were generally linear for more than two half-lives, except in the few cases where [imidazole]/[Fe] $<$ 10. Each k_{obs} is the average of at least three separate runs, with an average reproducibility of $\pm 5\%$. The second-order rate constants, k, were calculated from a least-squares analysis of the k_{obs} ν s. [imidazole] plots (e.g. Fig. 2).

Results and Discussion

Spectroscopic studies show that the reactions of cations (Ia) and (Ib) with excess imidazole occur in two stages, as shown in Scheme 1 $(X = H \text{ or } OMe)$.

Using equimolar amounts of (Ia) {or (Ib) } and imidazole, the monocationic adducts (IIa,b) are prepared and characterised (see Experimental). In *situ* IR and 'H NMR studies show that these additions proceed to completion. The 'H NMR spectra of (Ha) and (IIb) are characteristic of substituted 1,3-diene complexes of iron tricarbonyl, and are similar to that previously reported [2] for the analogous pyridinium adduct with (Ia). Interestingly, comparison with the ¹H NMR spectrum of free imidazole in $d⁶$ -acetone shows that the H^a proton is shifted downfield by 1.13 τ upon attachment of the Fe(CO)₃(C₆H₇)⁺residue to the tertiary nitrogen. This downfield shift is even larger than that (0.8τ) experienced by H^a upon protonation at the tertiary nitrogen. The H^b and H^c protons, which show only a single averaged

Fig. 2. Plot of k_{obs} vs. [imidazole] for addition of imidazole to $[Fe(CO)₃(1-5- η -C₆H₇)]$ 1 in CH₃CN at 0 °C.

peak in free imidazole due to rapid proton-exchange between the nitrogen centres, become inequivalent as expected in adducts (Ha) and (Hb), and experience somewhat smaller downfield shifts (ca. 0.6 τ). However, rapid exchange of the imidazole -NH proton is still evident in adducts (IIa,b), as shown by the failure to detect an appropriate 'H NMR resonance and the absence of coupling between H^a , H^b and NH. Finally, the ${}^{1}H$ NMR spectrum of the Fe(CO)₃(diene)-fragment of (IIb) confirms exclusive addition of imidazole at the 5-position of the dienyl ring, as has been found with a range of other nucleophiles [3, 41.

The $\nu(CO)$ bands of (IIa) and (IIb) in acetone at ca. 2060 and 1990 cm^{-1} are also very similar to those (2055 and 1980 cm^{-1}) found [2] for the pyridinium adduct. Further confirmation of the cationic nature of (IIa) comes from the presence of $\nu(BF_4^-)$ and (NH) bands in its Nujol mull ID spectrum at ca . 060 and 2350 cm⁻¹, respectively.

On the other hand, treatment of (Ia) with a large excess of imidazole in acetone produced the neutral complex (IIIa), presumably via deprotonation of (IIa) as shown in Scheme 1 $(B = \text{imidazole})$. In situ ¹H NMR experiments showed that (IIa) could also be deprotonated with triethylamine in $d⁶$ -acetone to produce (IIIa) quantitatively. As expected, the diene ring protons in neutral (IIIa) exhibit an upfield chemical shift compared with those in cation (IIa). The maximum shift of 0.37 τ is experienced by the $H^{5'}$ proton, due to its proximity to the site of protonation/deprotonation. The $\nu(CO)$ bands for (IIIa) in acetone at 2055 and 1979 cm^{-1} are also, as anticipated, at slightly lower frequency than those for cation (IIa). A similar difference of ca . 10 cm⁻¹ has been previously observed [1] between the $\nu(CO)$ bands of the related cationic and neutral anilinoderivatives $[Fe(CO)₃(14- η -5-C₆H₅NH₂ \cdot C₆H₇)]⁺ and$ $[Fe(CO)₃(1-4- η -5-C₆H₅NH \cdot C₆H₇)].$

The reverse protonation of (IIIa) by trifluoroacetic acid (TFA) in d^6 -acetone has also been examined. Addition of 5 drops of TFA causes rapid and quantitative conversion to cation (IIa), as evidence by ¹H NMR and IR spectra. In contrast, addition of only a single drop of TFA produces an 'H NMR spectrum intermediate between those of (IIa) and (IIIa). This sharp spectrum is believed to represent the equilibrium mixture of (IIa) and (IIIa) under these conditions, the proton-exchange equilibrium K_2 (Scheme 1) being established rapidly on the NMR time scale. Cooling to -50° C causes some line broadening, but considerably lower temperatures will apparently be required to slow the exchange sufficiently to freeze out the individual spectra.

Interestingly, addition of a large excess (10 drops) of TFA to (IIIa) in d^6 -acetone causes not only protonation, but also release of imidazole and regeneration of the dienyl cation (Ia). Thus the 'H NMR spectrum a few minutes after acid addition shows a mixture of (IIa) and (Ia). After a further 3 h at room temperature, imidazole release is complete and the only iron species present is (Ia). Similar acid-catalysed release of methoxy $[5]$, anilinio $[1]$, and pyridinio [2] substituents from (substituted diene) iron tricarbonyl complexes has been previously noted.

Kinetic results for the reactions of cations (Ia) and (Ib) with imidazole in acetonitrile are collected in Table I. Under the kinetic conditions employed both processes proceed rapidly to completion, yielding (IIIa) and (IIIb), and obey expression (1). These results may be rationalised in terms of the two-step mechanisms in Scheme 1. Assuming a steady-state concentration for the intermediate cationic adduct (II), Scheme 1 leads to the general expression (2).

$$
k_{obs} = k[\text{imidazole}] \tag{1}
$$

Since the deprotonation step, k_2 , is believed from the above 'H NMR evidence

$$
k_{\text{obs}} = \frac{k_1 k_2 \left[\text{imidazole} \right]^2}{k_{-1} + k_2 \left[\text{imidazole} \right]}
$$
 (2)

to be much faster than k_{-1} , eqn. (2) can be simplified to expression (3). This is consistent with the observed relationship (1). Thus, the k values

$$
k_{\text{obs}} = k_1[\text{imidazole}] \tag{3}
$$

in Table 1 are considered to refer to the secondorder rate constants, k_1 , for the addition of imidazole to the dienyl rings of (Ia,b).

Consistent with direct attack, k_1 , at the dienyl rings is the rate trend $C_6H_7 \gg 2$ -MeOC₆H₆ (relative rates ca. 85:1, Table I). The electronic and possible

TABLE I. Kinetic Results for Addition of Imidazole to [Fe- $(CO)_{3}(1-5-\eta-\text{dienyl})$ ⁺ Cations in CH₃CN at 0 °C.

Cation	102 [imidazole]/mol dm^{-3}	$k_{\rm obs}/s^{-1}$	k/mol^{-1} dm ³ s^{-1}
Ia	0.50	19.30	
	0.60	41.4	4390 (130) ^a
	0.90	43.1	
	1.00	42.2	
	1.10	46.7	
	1.20	48.9	
	1.50	60.5	
	2.00	103	
	3.00	132	
	4.00	157	
Ib	1.00	0.370	
	2.00	0.900	$51.4(0.5)^{a}$
	4.00	2.00	
	8.00	3.97	

***Values in brackets are the standard errors of estimate from the least squares analyses.**

steric influence of the 2-methoxy substituent is expected to retard nucleophilic addition at the dienyl ring, as has been found in the analogous additions by pyridine [2] and triphenylphosphine [4]. However, the retardation was much less marked with these latter nucleophiles (only a factor of five).

One interesting result of the above differences is that although imidazole is ca . twice as reactive as pyridine towards cation (Ia) $\{k_1$ values of 4390 and 2170 mol^{-1} dm³ s⁻¹, respectively}, the rate order pyridine $>$ imidazole (relative rates 8:1) is observed for analogous attack on (Ib). As far as we are aware, this is the first time that a reversal of nucleophilicity order has been reported for additions to different $[(\pi\text{-hydrocarbon})M(CO)₃]$ ⁺ cations. These results contrast with Ritchie's [6] observation of a common nucleophilicity order towards a wide range of metalfree stabilized carbonium ions.

The unexpectedly slow reaction of imidazole with (Ib) compared to (Ia) may reflect a specific interaction, such as H-bonding between the imidazole-NH and the oxygen of the 2-methoxy substituent. This could sterically retard subsequent ring addition by imidazole at $C(5)$. The importance of Hbonding interactions in the reactions of imidazole with biological substrates such as metalloporphyrins has recently been emphasised [7] .

We observed no reaction between pyrazine and (Ia) at room temperature. Thus, for this parent cation, the nucleophilicity order of the tertiary amines (imidazole > pyridine \gg pyrazine) is seen to parallel their basicities (pK_a 's of 6.95, 5.25, and 0.65, respectively).

Finally, the above results are relevant to our studies [5] of the interactions between amino acids and organometallic cations such as (Ia,b). The high nucleophilicity of imidazole suggests that in histidine this group may be able to compete with the $NH₂$ and COO⁻ donors for the π -hydrocarbon substrates. The possible synthetic and mechanistic implications are currently being explored.

Acknowledgement

We thank the SRC for a Studentship (to D.J.E.) and for financial support.

References

- L. A. P. Kane-Maguire, T. I. Odiaka, S. Turgoose and P.A. Williams, J. Chem. Soc., Dalton Trans., 2489 (1981), and refs. therein.
- T. I. Odiaka and L. A. P. Kane-Maguire, *J. Chem. Sot., Dalton Trans., 1162* (1981).
- A. J. Birch, P. E. Cross, J. Lewis, D. A. White and S. B. Wild, J. *Chem. Sot. A.,* 332 (1968).
- G. R. John and L. A. P. Kane-Maguire, J. *Chem. Sot., Dalton Trans., 873* (1979).
- A. L. Burrows, K. Hine, B. F. G. Johnson, J. Lewis, D. G. Parker, A. Pöe and E. J. S. Vichi, J. Chem. Soc., Dalton *Trans.,* 1135 (1980).
- C. D. Ritchie, J. Am. *Chem. Sot.,* 97, 1170 (1975), and refs. therein.
- 7 W. W. Fiske and D. A. Sweigart, *Inorg. Chim. Acta*, 36, L429 (1979), and refs. therein.